AWS Deployment¶
Deploy GPUX models on Amazon Web Services with GPU support.
🎯 Overview¶
Complete guide for deploying GPUX on AWS with EC2 GPU instances and managed services.
In Development
Detailed deployment guide for AWS is being developed. Basic functionality is available.
📚 What Will Be Covered¶
- 🔄 EC2 GPU Instances: P3, P4, G4, G5 instance types
- 🔄 ECS with GPU: Container orchestration with GPU support
- 🔄 EKS with GPU: Kubernetes on AWS with GPU nodes
- 🔄 Lambda Integration: Serverless inference patterns
- 🔄 S3 Model Storage: Model artifact storage and retrieval
- 🔄 CloudWatch Monitoring: Metrics and logging
- 🔄 Cost Optimization: Spot instances and auto-scaling
🚀 Quick Start¶
EC2 GPU Instance¶
# Launch EC2 instance with GPU
aws ec2 run-instances \
--image-id ami-0c02fb55956c7d316 \
--instance-type p3.2xlarge \
--key-name my-key \
--security-group-ids sg-12345678 \
--subnet-id subnet-12345678
# Connect and install GPUX
ssh -i my-key.pem ec2-user@<instance-ip>
sudo yum update -y
sudo yum install -y python3 python3-pip
pip3 install gpux
# Pull and serve model
gpux pull microsoft/DialoGPT-medium
gpux serve microsoft/DialoGPT-medium --port 8080
Docker on EC2¶
FROM python:3.11-slim
WORKDIR /app
RUN pip install gpux
# Pull model from Hugging Face Hub
RUN gpux pull microsoft/DialoGPT-medium
EXPOSE 8080
CMD ["gpux", "serve", "microsoft/DialoGPT-medium", "--port", "8080"]
🔧 Advanced Configuration¶
ECS with GPU Support¶
{
"family": "gpux-model",
"taskRoleArn": "arn:aws:iam::123456789012:role/ecsTaskRole",
"executionRoleArn": "arn:aws:iam::123456789012:role/ecsTaskExecutionRole",
"networkMode": "awsvpc",
"requiresCompatibilities": ["EC2"],
"cpu": "2048",
"memory": "4096",
"containerDefinitions": [
{
"name": "gpux-model",
"image": "my-gpux-model:latest",
"portMappings": [
{
"containerPort": 8080,
"protocol": "tcp"
}
],
"resourceRequirements": [
{
"type": "GPU",
"value": "1"
}
],
"logConfiguration": {
"logDriver": "awslogs",
"options": {
"awslogs-group": "/ecs/gpux-model",
"awslogs-region": "us-west-2",
"awslogs-stream-prefix": "ecs"
}
}
}
]
}
EKS with GPU Nodes¶
apiVersion: apps/v1
kind: Deployment
metadata:
name: gpux-model-aws
spec:
replicas: 1
selector:
matchLabels:
app: gpux-model-aws
template:
metadata:
labels:
app: gpux-model-aws
spec:
containers:
- name: gpux
image: my-gpux-model:latest
ports:
- containerPort: 8080
resources:
requests:
memory: "4Gi"
cpu: "2"
nvidia.com/gpu: 1
limits:
memory: "8Gi"
cpu: "4"
nvidia.com/gpu: 1
nodeSelector:
node.kubernetes.io/instance-type: p3.2xlarge
💡 Key Takeaways¶
Success
✅ GPU Instance Support: P3, P4, G4, G5 instances ✅ Container Orchestration: ECS and EKS with GPU support ✅ Model Registry Integration: Pull models from Hugging Face Hub ✅ Auto-scaling: EC2 Auto Scaling Groups ✅ Monitoring: CloudWatch integration
Previous: Kubernetes → | Next: Google Cloud →