Azure Deployment¶
Deploy GPUX models on Microsoft Azure with GPU support.
🎯 Overview¶
Complete guide for deploying GPUX on Azure with GPU VMs and managed services.
In Development
Detailed deployment guide for Azure is being developed. Basic functionality is available.
📚 What Will Be Covered¶
- 🔄 Azure GPU VMs: NC, ND, NV series instances
- 🔄 AKS with GPU: Kubernetes on Azure with GPU nodes
- 🔄 Container Instances: Serverless container deployment
- 🔄 Azure Functions: Serverless inference patterns
- 🔄 Blob Storage: Model artifact storage
- 🔄 Azure Monitor: Metrics and logging
- 🔄 Cost Optimization: Spot VMs and auto-scaling
🚀 Quick Start¶
Azure GPU VM¶
# Create GPU VM
az vm create \
--resource-group myResourceGroup \
--name gpux-gpu-vm \
--image UbuntuLTS \
--size Standard_NC6s_v3 \
--admin-username azureuser \
--generate-ssh-keys
# Connect and install GPUX
ssh azureuser@<vm-ip>
sudo apt update
sudo apt install -y python3 python3-pip
pip3 install gpux
# Pull and serve model
gpux pull microsoft/DialoGPT-medium
gpux serve microsoft/DialoGPT-medium --port 8080
Docker on Azure¶
FROM python:3.11-slim
WORKDIR /app
RUN pip install gpux
# Pull model from Hugging Face Hub
RUN gpux pull microsoft/DialoGPT-medium
EXPOSE 8080
CMD ["gpux", "serve", "microsoft/DialoGPT-medium", "--port", "8080"]
💡 Key Takeaways¶
Success
✅ Azure GPU Support: NC, ND, NV series VMs ✅ AKS Integration: Kubernetes with GPU nodes ✅ Model Registry Integration: Pull models from Hugging Face Hub ✅ Auto-scaling: Virtual Machine Scale Sets ✅ Monitoring: Azure Monitor integration
Previous: Google Cloud → | Next: Edge Devices →