Skip to content

Google Cloud Deployment

Deploy GPUX models on Google Cloud Platform with GPU support.


🎯 Overview

Complete guide for deploying GPUX on GCP with Cloud GPU and managed services.

In Development

Detailed deployment guide for GCP is being developed. Basic functionality is available.


📚 What Will Be Covered

  • 🔄 Cloud GPU: T4, V100, A100 instance types
  • 🔄 GKE with GPU: Kubernetes on GCP with GPU nodes
  • 🔄 Cloud Run: Serverless container deployment
  • 🔄 Cloud Functions: Serverless inference patterns
  • 🔄 Cloud Storage: Model artifact storage
  • 🔄 Cloud Monitoring: Metrics and logging
  • 🔄 Cost Optimization: Preemptible instances and auto-scaling

🚀 Quick Start

Compute Engine GPU Instance

# Create GPU instance
gcloud compute instances create gpux-gpu \
  --zone=us-central1-a \
  --machine-type=n1-standard-4 \
  --accelerator=type=nvidia-tesla-t4,count=1 \
  --image-family=ubuntu-2004-lts \
  --image-project=ubuntu-os-cloud \
  --maintenance-policy=TERMINATE \
  --restart-on-failure

# Connect and install GPUX
ssh <instance-ip>
sudo apt update
sudo apt install -y python3 python3-pip
pip3 install gpux

# Pull and serve model
gpux pull microsoft/DialoGPT-medium
gpux serve microsoft/DialoGPT-medium --port 8080

Docker on GCP

FROM python:3.11-slim

WORKDIR /app
RUN pip install gpux

# Pull model from Hugging Face Hub
RUN gpux pull microsoft/DialoGPT-medium

EXPOSE 8080
CMD ["gpux", "serve", "microsoft/DialoGPT-medium", "--port", "8080"]

💡 Key Takeaways

Success

✅ Cloud GPU Support: T4, V100, A100 instances ✅ GKE Integration: Kubernetes with GPU nodes ✅ Model Registry Integration: Pull models from Hugging Face Hub ✅ Auto-scaling: Managed instance groups ✅ Monitoring: Cloud Monitoring integration


Previous: AWS → | Next: Azure →