Serverless Deployment¶
Deploy GPUX models using serverless functions and event-driven architectures.
🎯 Overview¶
Complete guide for deploying GPUX using serverless platforms including AWS Lambda, Google Cloud Functions, and Azure Functions.
In Development
Detailed deployment guide for serverless is being developed. Basic functionality is available.
📚 What Will Be Covered¶
- 🔄 AWS Lambda: Function-as-a-Service with GPU support
- 🔄 Google Cloud Functions: Serverless inference patterns
- 🔄 Azure Functions: Event-driven model serving
- 🔄 Vercel Functions: Edge computing deployment
- 🔄 Model Caching: Persistent model storage strategies
- 🔄 Cold Start Optimization: Fast model loading
- 🔄 Cost Optimization: Pay-per-inference pricing
🚀 Quick Start¶
AWS Lambda¶
import json
from gpux.core.runtime import GPUXRuntime
from gpux.config.parser import GPUXConfigParser
def lambda_handler(event, context):
# Load model configuration
config = GPUXConfigParser.parse("gpux.yml")
# Initialize runtime
runtime = GPUXRuntime(config)
# Run inference
input_data = json.loads(event['body'])
result = runtime.run(input_data)
return {
'statusCode': 200,
'body': json.dumps(result)
}
Google Cloud Functions¶
import json
from gpux.core.runtime import GPUXRuntime
from gpux.config.parser import GPUXConfigParser
def inference_function(request):
# Load model configuration
config = GPUXConfigParser.parse("gpux.yml")
# Initialize runtime
runtime = GPUXRuntime(config)
# Run inference
input_data = request.get_json()
result = runtime.run(input_data)
return json.dumps(result)
Vercel Functions¶
// api/inference.js
export default async function handler(req, res) {
const { spawn } = require('child_process');
// Run GPUX inference
const gpux = spawn('gpux', ['run', 'model-name', '--input', JSON.stringify(req.body)]);
let result = '';
gpux.stdout.on('data', (data) => {
result += data.toString();
});
gpux.on('close', (code) => {
res.status(200).json(JSON.parse(result));
});
}
💡 Key Takeaways¶
Success
✅ Event-Driven: Trigger inference on demand ✅ Auto-scaling: Automatic scaling based on load ✅ Pay-per-Use: Cost-effective for sporadic usage ✅ No Infrastructure: Managed serverless platforms ✅ Cold Start Optimization: Fast model loading
Previous: Edge Devices → | Next: Deployment Index